Examination of Current Profiles in Magnetic Islands During RF Current Condensation Daniel A. Korsun¹, Allan H. Reiman², Nathaniel J. Fisch²

• As a result, ECCD and LHCD should naturally deposit more power at the island center

0.2 0.4 0.6 0.8 1 1.2 1.4

0.6

island radius.

Image credit:

I. G. J. Classen

• This should cause electron temperature to increase further, resulting in a positive feedback loop and the *RF current condensation effect*

¹Department of Physics, Massachusetts Institute of Technology, Cambridge, MA ²Princeton Plasma Physics Laboratory, Princeton, NJ

Normalized power deposition profiles for both constant power density and wave depletion models

0.4

0.2

• As V_0 increases, wave depletion profiles approach constant power density profiles • For small V₀, wave depletion shifts the bifurcation point and can allow for greater current condensation at the island center

0.6

0.8

1.2 1.0 \overline{c} or P_0

u(0) as a function of either \overline{c} or P_{o} , where u(0) is the value of u at the island center. The curves end at their respective bifurcation points

RF current condensation holds potential for stabilization of islands

All three scenarios examined demonstrate noticeable current condensation at the island center

• Wave depletion for large V_0 recovers the

constant power density deposition profiles

• Wave depletion for small V_0 can allow for

increased current condensation

• Wave depletion above the bifurcation point

could result in even greater current

condensation at the island center

Future work

Further explore the impact of V_0 on the bifurcation threshold

• Explore deposition profiles above the bifurcation threshold

• Construct profiles including the symmetrizing term, V'(-x)

• Experimentally verify the existence of the RF current condensation effect in a tokamak

Acknowledgements

This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by DOE Contract No. DE-AC02-09CH11466.

References

• A. H. Reiman, Physics of Fluids **26**, 1338 (1983) • A. H. Reiman and N. J. Fisch, arXiv:1806.09260 [physics.plasm-ph] (2018)

Contact

• Daniel Korsun: dkorsun@mit.edu • Allan Reiman: reiman@pppl.gov • Nathaniel Fisch: fisch@pppl.gov